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Abstract 
RCS (Real-time Control System) is an intelligent agent 
architecture designed to enable any level of intelligent 
behavior, up to and including human levels of performance.  
RCS was inspired 30 years ago by a theoretical model of 
the cerebellum, the portion of the brain responsible for fine 
motor coordination and control of conscious motions.  It 
was originally designed for sensory-interactive goal-
directed control of laboratory manipulators.  Over three 
decades, it has evolved into a real-time control architecture 
for intelligent machine tools, factory automation systems, 
and intelligent autonomous vehicles. 
 
In this paper, we describe the 4D/RCS architecture, how it 
relates to other popular intelligent agent architectures, how 
it addresses the three most significant theoretical arguments 
against intelligent agent architectures, and its underlying 
engineering methodology. 

1.0 Introduction 
Interest in intelligent agent architectures has grown rapidly 
over the past two decades as a result of a confluence of 
three important events:   
 
1. The emergence of a computational theory of 

intelligence: A fully developed scientific theory of 
intelligence does not yet exist, but an understanding 
of how to build intelligent systems is developing 
faster than most people appreciate.  Progress is rapid 
in many different fields.  Recent results from a 
number of different disciplines, including the 
neurosciences, cognitive psychology, artificial 
intelligence, robotics, and intelligent machines, have 
laid the foundations for a computational theory of 
intelligence [3]. 

2. The continued exponential growth of computing 
power: The estimated computational power of the 
human brain is already rivaled by existing 
supercomputers.  Within the next quarter century, 
computational power approaching that of the human 
brain can be expected from a small network of 
desktop machines [17]. This means that serious 
attempts can be made to model the functional 
capabilities of the brain in perception, cognition, and 
behavioral skills. Of course, having the 

computational power is only part of the challenge; the 
rest is making proper use of it. 

3. Growth in user interest for military and 
commercial applications: Potential applications in 
both civilian and military systems have begun to 
emerge for the control of autonomous vehicles.  In 
the United States, military interest in unmanned 
vehicles (air, ground, and sea) has grown rapidly as 
autonomous vehicle capabilities have been 
demonstrated that far exceed previous expectations  
[24]. In Japan, Europe, and the U.S., automotive 
companies are actively pursuing commercial 
applications of adaptive cruise control, crash warning 
systems, and collision avoidance technology. The 
eventual result may be the intelligent autonomous 
automobile. 

 
However, the increased interest in intelligent agent 
architectures has resulted in various disparate approaches 
to their development and implementation. In this paper, we 
discuss one of those approaches, the 4D/RCS (Real-time 
Control System) and compare it to some of the other 
architectures being developed. We also show how 4D/RCS 
addresses some of the major theoretical arguments against 
intelligent agent architectures, namely, abductive 
inference, symbol grounding, and the frame problem.  
 
Section 2 will discuss the characteristics of various 
intelligent agent architectures, Section 3 describes the 
4D/RCS reference model, Section 4 describes how 
4D/RCS addresses some of the theoretical problems of 
computational models, Section 5 steps through the RCS 
methodology for system design, and Section 6 concludes 
the paper. 

2.0 Intelligent agent architectures 
An intelligent agent architecture can be defined as the 
organizational structure of functional processes and 
knowledge representations that enable the modeling of 
cognitive phenomena.  Over the past half-century, several 
intelligent agent architectures have been developed.  One 
of the earliest was the ACT architecture [8]. ACT grew out 
of research on human memory.  Over the years, ACT has 
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Figure 1.  A 4D/RCS reference model architecture for an autonomous vehicle. 

evolved into ACT* and more recently, ACT-R. ACT-R is 
being used in several research projects in an Advanced 
Decision Architectures Collaborative Technology Alliance 
for the U.S. Army [15]. ACT-R is also being used by 
thousands of schools across the country as an algebra tutor 
– an instructional system that supports learning-by-doing.  
 
Another well-known and widely used architecture is Soar.  
Soar grew out of research on human problem solving, and 
has been used for many academic and military research 
projects in problem solving, language understanding, 
computational linguistics, theorem proving, and cognitive 
modeling [18]. A recent commercial version of Soar (Tac-
Air Soar) has been developed to address a number of 
simulation and training problems for the U.S. Air Force1 
[1]. 
 
Other intelligent agent architectures include Prodigy, 
ICARUS, IMPRINT, EPIC, and RCS.  Like Soar, Prodigy 
uses search through a problem space to achieve goals cast 
as first-order expressions [19]. ICARUS is a reactive 
architecture that encodes knowledge as reactive skills [23]. 
IMPRINT is a task description language designed for the 
Army to capture the procedural specification of tactical 
behavior scenarios. It contains a dynamic, stochastic, 
discrete-event network modeling tool designed to help 
assess the interaction of soldier and system performance 

throughout the system lifecycle – from concept and design 
through field testing and system upgrades. IMPRINT has 
been integrated with ACT-R to model military behaviors 
[9]. EPIC is an architecture that models the detailed timing 
of human perceptual, cognitive, and motor activity, 
including the input/output characteristics of the nervous 
system connecting the higher level cognitive functions to 
the external world [16]. RCS is a control system 
architecture inspired by a theory of cerebellar function [2]. 
RCS models the brain as a hierarchy of goal-directed 
sensory-interactive intelligent control processes that 
theoretically could be implemented by neural nets, finite 
state automata, or production rules [7]. 
 
RCS is similar to other intelligent agent architectures in 
that it represents procedural knowledge in terms of 
production rules, and represents declarative knowledge in 
abstract data structures such as frames, classes, and 
semantic nets.  RCS differs from other intelligent agent 
architectures in that it also includes signals, images, and 
maps in its knowledge database, and maintains a tight real-
time coupling between iconic and symbolic data structures 
in its world model.  RCS is also different in: a) its level of 
specificity in the assignment of duties and responsibilities 
to agents and units in the behavior generating hierarchy; b) 
its emphasis on controlling real machines in real-world 
environments; and c) its malleability to the specific 
requirements of the domain. To elaborate on (c), when 
using other architectures, one is often getting a monolithic 
piece of software and then adds knowledge, often in the 
form of rules and chunks. Within 4D/RCS, one is able to 
apply appropriate planning systems, sensory processing 

                                                 
1 The name of commercial products or vendors does not 
imply NIST endorsement or that this product is necessarily 
the best for the purpose. 
 



algorithms, and capture knowledge in a format that is most 
conducive to the domain of interest. RCS does not dictate 
what form that knowledge must take. Instead, it provides a 
framework that allows one to apply whatever knowledge 
representation technique that is most appropriate for the 
knowledge that is to be represented.  
 
RCS evolved from the bottom up as a real-time intelligent 
control system for real machines operating on real objects 
in the real world.  The first version of RCS was developed 
as a sensory-interactive goal-directed controller for a 
laboratory robot.  Over the years, RCS has evolved into an 
intelligent controller for industrial robots, machine tools, 
intelligent manufacturing systems, automated general mail 
facilities, automated stamp distribution systems, automated 
mining equipment, unmanned underwater vehicles, and 
unmanned ground vehicles [4]. Throughout its 
development, all symbols in the RCS world model have 
been grounded to objects and states in the real world. 
 
The most recent version of RCS (4D/RCS) embeds 
elements of Dickmanns [13] 4-D approach to machine 
vision within the RCS control architecture.  4D/RCS was 
designed for the U.S. Army Research Lab AUTONAV and 
Demo III Experimental Unmanned Vehicle programs and 
has been adopted by the Army Future Combat System 
program for Autonomous Navigation Systems [5]. 

3.0 The 4D/RCS Reference Model 
Architecture 

A reference model architecture describes the functions, 
entities, events, relationships, and information flow that 
takes place within and between functional modules.  A 
reference model provides a framework for the 
specification of functional requirements, the design of 
software to meet those requirements, and the testing of 
components and systems.  A block diagram of a 4D/RCS 
reference model architecture is shown in Figure 1.  Each 
node in the architecture represents an operational unit in 
an organizational hierarchy.  Each node contains a 
behavior generation (BG), world modelling (WM), 
sensory processing (SP), and value judgment (VJ) 
processes together with a knowledge database (KD) (not 
shown in Figure 1.)   
 
Each node contains both a deliberative and a reactive 
component.  Bottom-up, each node closes a reactive 
control loop driven by feedback from sensors.  Top-down, 
each node generates and executes plans designed to satisfy 
task goals, priorities, and constraints conveyed by 
commands from above.  Within each node, deliberative 
plans are merged with reactive behaviors. 
 
Each BG process accepts tasks and plans and executes 
behavior designed to accomplish those tasks.  The internal 
structure of the BG process consists of a planner and a set 
of executors (EX). Task commands from a supervisor BG 

process are sent to a planner module that decomposes each 
task into a set of coordinated plans for subordinate BG 
processes.  For each subordinate there is an Executor that 
issues commands, monitors progress, and compensates for 
errors between desired plans and observed results.  The 
Executors use feedback to react quickly to emergency 
conditions with reflexive actions.  Predictive capabilities 
provided by the WM may enable the Executors to generate 
preemptive behavior. 
 
SP and WM processes interact to support windowing (i.e., 
attention), grouping (i.e., segmentation), recursive 
estimation (e.g., Kalman filtering), and classification (i.e., 
detection or recognition).  WM processes generate and 
update images, maps, entities, events, attributes, and states 
in the KD.  Working together, BG, WM, and SP enable 
deliberative, reactive, and preemptive behavior.  
Coordination between subordinate BG processes is 
achieved by cross-coupling among plans and sharing of 
information among Executors via the KD.   
 
At the top, the highest-level task is defined by the highest- 
level (i.e., mission) goal.  At each successive level in the 
hierarchy, commanded tasks from above are decomposed 
into subtasks that are sent to subordinates below.  Finally, 
at the bottom, subcommand outputs are sent to actuators to 
generate forces and movements.  Also at the bottom, 
sensors transform energy into signals that provide sensory 
input. 

4.0 Discussion  
4D/RCS addresses three of the most significant theoretical 
arguments raised against the possibility of computers 
achieving human levels of intelligence.  These are:  

4.1. Abductive Inference 
Abductive inference is the process of reasoning backward 
from consequent to antecedent.  It has been described by 
Pierce [20] as “nothing but guessing.” The inability of 
local syntactical systems to perform abductive inference is 
cited by Fodor [14] as why he believes computational 
processes cannot produce true intelligence.  To Fodor, all 
computer operations are inherently local and syntactic, and 
hence fundamentally incapable of context sensitive logic.   
 
But the RCS architecture is driven top-down by high level 
mission goals, priorities, and constraints. These provide 
global context for making gestalt hypotheses (i.e., 
perceptual guesses) regarding where to focus attention and 
how to group (or segment) signals and pixels into patterns 
and regions that correspond to entities and events in the 
external world.  At each level of sensory processing, 
abductive inferences in the form of gestalt hypotheses are 
used to segment signals and images. Abductive inferences 
can be tested by comparing expectations based on 
hypotheses against observations from sensors.  For each 



hypothesized entity or event, variance between predictions 
and observations provides a measure of confidence in the 
hypothesis. When variance is small, confidence is high, 
and vice versa. If confidence falls below threshold, a 
hypothesis is rejected and another generated.  This 
supports Pierces’s claims that abduction can be 
represented in a “perfect definite logical form.” 
 
4.2 Symbol Grounding 
Symbol grounding is the establishment of direct 
correspondence between internal symbolic data and 
external real world entities, events, and relationships.  The 
inability of local syntactical systems to perform symbol 
grounding is cited by Searle [22] as why he believes 
computational processes can never be really intelligent.  
To Searle, computer operations are without semantic 
meaning because the symbols they manipulate are never 
grounded in the real world.  
 
But the 4D/RCS architecture establishes and maintains a 
direct link between the internal world model and the 
external real world.  An RCS attention process directs 
sensors toward regions of the world that are important.  An 
RCS segmentation process applies context-sensitive gestalt 
grouping hypotheses to patterns of signals from sensors.  
As a result of segmentation, spatial and temporal 
groupings are linked to named symbolic data structures 
(such as C structs, or C++ objects and classes) that 
represent hypothesized entities and events.  Geometric and 
temporal attributes of hypothesized groups are computed, 
and relationships (represented as pointers) between 
entities, events, and their constituent elements are 
established and maintained.  Finally, entities and events 
are classified and recognized by comparing observed 
attributes to stored attributes of class prototypes.  This 
entire process is repeated at each stage of sensory 
processing at a rate fast enough to capture the dynamics of 
the entities and events being attended to. 
 
This recursive two-way interaction between model-based 
expectations and sensory-based observations provides 
symbol grounding.  Expectations based on attributes and 
class membership of entities and events in the world model 
are constantly compared against observations derived from 
sensors monitoring corresponding entities and events in 
the real world.  In this way, symbolic representations of 
entities, events, and relationships in the 4D/RCS world 
model are grounded to entities, events, and relationships in 
the real world. 

4.3 The Frame Problem 
The frame problem is the problem of predicting what in 
the world changes as the result of an action, and what stays 
the same.  The frame problem results from attempting to 
model the world entirely in terms of logical propositions 
[21].  Many important features about the world (in 
particular geometry and dynamics) are not easily modeled 
by logical propositions.  For example, as I write this, I am 

pondering the difficulties of using logical propositions to 
model a bookcase in my office that is filled with books, 
papers, boxes, folders, and assorted junk and trash.  As I 
ponder this, a fly maneuvers at high speed (in terms of 
body lengths per second) around my bookcase without 
danger of collision.  Apparently, the fly’s internal model 
of the world enables it to fly between shelves and stacks of 
books and papers without collision, and to land on the tip 
of a straw in an old soda can without difficulty.  Surely the 
fly’s brain does not represent my bookcase in terms of 
logical propositions.   
 
It has been said that a picture is worth a thousand words.  I 
would venture that a 4-D representation (3 spatial + 1 
temporal) of a complex scenario in a dynamic environment 
may be worth a million logical propositions.   
 
On the other hand, the location and direction of motion of 
objects in the world are easily represented in an image or 
map, and distinguishing what changes from what does not 
in a dynamic environment can be easily determined by 
simple comparison between one visual image and the next.  
That is why 4D/RCS representations include iconic or 
metrical formats such as visual images and maps in 
addition to symbolic data structures such as frames, 
objects, classes, and rules.  Both iconic and symbolic 
formats are linked together by pointers in a real-time 
relational database that is updated in each node at a rate 
that is commensurate with the requirements of the 
planning and control processes within that node. 
 
At the lowest level, signals and images from sensors are 
sampled many times per second and compared with 
expectations generated from world model predictions.  At 
all levels, differences between observations and 
expectations are used to update the internal model by a 
process of recursive estimation.  Predictions from the 
world model are projected back into sensor coordinates, 
overlaid on, and cross correlated with images and maps of 
the external world.  The result is that symbols in the world 
model are linked to, and can be projected back onto, pixels 
and regions in images and maps.  In this way, the internal 
world model is effectively servoed to the external real 
world, and symbolic data structures in the world model are 
grounded to entities and events in the real world.  Thus, 
the ability for 4D/RCS to accommodate and integrate 
multiple types of representations into a common 
architecture takes major steps in addressing the frame 
problem [6]. 
 
At each echelon of the behavior generation hierarchy, the 
range and resolution of knowledge about the world is 
defined by the requirements of the task.  At each echelon, 
an attention process, driven by task priorities and 
differences between observations and predictions, selects 
those regions of the world that are important to the task.  
At each echelon, the world model enables 4D/RCS 
behavior generation processes to plan tasks and paths that 
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optimize a cost function that is defined by the global 
context of task goals, intent, priorities, and constraints. 
 

5.0 Engineering Methodology 
Although RCS is often thought of as a reference model 
architecture, as described above, there is also a 
corresponding methodology that accompanies it. Over the 
past thirty five years, as many different applications have 
been implemented using the RCS reference model 
architecture, an RCS software engineering methodology 
has evolved [11]. Thus, one can think of RCS as both an 
architecture and a methodology. 
 
In Figure 2, an example of the RCS methodology for 
designing a control system for autonomous on-road 
driving under everyday traffic conditions is summarized in 
six steps. Each of these six steps is performed during 
design time, and is performed via human analysis (as 
described below). 

5.1. Task Decomposition Design 
The first step is to gather as much task related knowledge 
as possible with the goal of defining a set of commands 
that incorporate all of the activities at all levels of detail.  

For on-road driving this knowledge source would include 
driving manuals, state and federal driving codes, manuals 
on traffic control devices and detailed scenario narratives 
by subject matter experts (SMEs) of large numbers of 
different driving experiences. 
 
Scenarios and examples are gone over in an attempt to 
come up with the names of commands that describe the 
activities at finer and finer resolutions of detail.  Figure 3 
provides an example.  The high level goal of “Goto 
destination” (such as “go to post office”) is broken down 
into a set of simpler commands – “GoOnRoad-name”, 
“TurnLeft Onto-name” (MapQuest-like commands).  At 
the next level down, these commands are broken down to 
simpler commands such as “Drive On Two Lane Road”, 
“Pass Vehicle In Front” and these are then decomposed to 
yet simpler commands such as “FollowLane”, 
ChangeToLeftLane”, etc. 
 
Four very important things are being done with the 
knowledge in this step.  

1. The first is the discovery and naming of simpler 
component subtasks that go into making up the  
more complex tasks.   

2. The second is that for each of these component 
subtasks, we are defining a subtask command. 



3. The third is the understanding of the coordination 
of subtask activities that the task involves. This is 
identified by the analysis of scenarios of 
remembered specific examples.  

4. The fourth is the careful grouping of these 
commands by layer and decomposition to ensure 
that the example on-road driving tasks can be 
completely described, from the start to finish of a 
scenario, by the proper sequencing of these 
commands at the appropriate levels.   

 
This first step of the methodology sets the number of 
layers of agent control modules that will be required by 
step 2 (below) to execute the task decomposition. 

5.2 Step 2 – Agent Control Module Organization 
Once a set of commands is defined, we need an 
organization to execute them.  This step is identical to 
laying out an organizational structure of people in a 
business or the military.  You know what you want to do 
at various levels of detail – now you need an organization 
of intelligent agents to do it.  This structure is built from 

the bottom up.  The above detailed task decomposition 
will tell us how many layers of agents to have in our 
organization but not how many agents are at a level or 
how they are grouped and coordinated.  This step starts at 
the bottom with an agent control module controlling each 
actuator in the system and then uses the knowledge of the 
task activities to understand which subordinate agents are 
grouped under which supervisor to best coordinate the task 
commands from Step 1.   

 

Figure 3.  Task decomposition decision tree for on-road 
driving example.   

GotoDestination...

GoOn…Rd TurnRightOnto...RdTurnLeftOnto...Rd

FollowLane

DoTrajSeg

DriveOnTwoLaneRd PassVehInFront NegotiateLaneConstriction

ChangeToRightLaneChangeToLeftLane

GoOn…Rd GoOn…Rd

FollowLane FollowLane

DoTrajSegDoTrajSegDoTrajSeg

Turn AccelerateForward SlowDown

 
Figure 4 illustrates how a grouping of agent control 
modules is assembled to accomplish the commands 
defined in Step 1.  In this example, the lowest level servo 
control modules are represented by icons of the actuators 
being controlled.  The steering servo control module is 
represented by a steering wheel icon, the brake servo by a 
brake pedal icon, etc.  For this simple example, only four 
actuator control module icons are shown.  The brake, 
throttle, and transmission servo agent control modules are 
grouped under a single supervisor agent control module, 
which we will call the Speed Control Agent.  This 
supervisor agent control module will receive commands 
such as “AccelerateForward” (a more general form would 
be “Accelerate (magnitude, direction)) and have to 
coordinate its output commands to the brake, the throttle, 
and the transmission to accomplish them.  By a similar 
analysis, the Steering Servo Agent is placed under a 
supervisor agent we call the Steering Control Agent 
Module. The Vehicle Trajectory Control Agent 
coordinates steering commands to the Steering Control 
Agent with the speed commands sent to the Speed Control 
Agent described above.  The command decomposition of 
the commands at levels above the Vehicle Trajectory 
Control Agent are shown being executed by a single agent 
at each layer since there are no more subordinate agent 
control modules to be coordinated in this simple example.  
In a more realistic implementation, there would be 
additional agent control modules for ignition and engine 
starting, lights, turn signals, windshield wiper/washer, 
pan/tilt turrets that carry the sensor sets, etc.  This would 
be the step at which the organizational structure would be 
defined to properly coordinate these modules’ activities in 
accordance with step 1 as described in Section 5.1. 
 



5.3. Step 3 – State-Table Definitions 
At this stage of the knowledge definition process we know 
the vocabulary and syntax of commands.  We also know 
what set of subcommands each command decomposes 
into, and where in the agent control hierarchy these  
decompositions take place.  Step 3 is to establish the rules 
that govern each command’s decomposition into its 
appropriate sequence of simpler output commands.  These 
rules are discovered by first listing the approximate 
sequence set of output commands that correspond to a 
particular input command to an agent. 
 
Figure 5 illustrates this step with a state-table of the “Pass 
Veh(icle) In Front” command at the Driving Behaviors 
Agent Control Module.  This pass command is 
decomposed into five simpler output commands – “Follow 
Lane”, “Change to Left Lane”, “Follow Lane”, “Change to 
Right Lane”, and “Follow Lane” which are at the 
appropriate level of resolution for this layer in the agent 
hierarchy.  These output commands can be read in 
sequence down the right hand column of the state table.  
The knowledge that is being added by this step 3 is to 
identify and name the situations (the left hand column of 
the state-table) that will transition the activity to each of 
these output commands.  These named situations are the 

branching conditions that complete the task decision tree 
representation. 
 
Each of these newly named transition situations with their 
corresponding output command actions represent a single 
production rule that is represented as a single line in the 
state-table. The sequence in which these lines (rules) are 
executed is ordered by the addition of a state variable (S1, 
S2, etc).  In the example in Figure 5, the first rule shown in 
the state-table says that if this is a “New Plan” (input 
condition), then the output action side of the rule (the right 
hand side of the state-table) sets the state to “S1” and 
outputs the command to “Follow Lane”.  As a result of 
executing this rule, this module is now in state “S1” and 
can only execute rules that include the state value of “S1” 
in their input condition.  The only rules that will be 
searched by this module are those in the state-table that 
clusters the rules relating to this particular input command 
(“PassVehInFront”).  In this state table, there is only one 
line (rule) that contains the state value “S1” as one of its 
input conditions.  Thus, only that line can match and it will 
not match until the situation “ConditionsGoodToPass” is 
also true.  When this situation occurs, this line will match 
(this rule will fire) and the module will go to state “S2” 
and output the command to “ChangeToLeftLane”.   This 
output command is sent to the subordinate agent control 
module (Elemental Maneuvers Control Module) where it 
becomes that module’s input command invoking a 
corresponding state-table to be evaluated as described 
here.   
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Figure 5.  State-table for the Pass Vehicle In Front command.   

 S1  ConditionsGoodToPass

PassVehInFront

 S2  ChangeToLeftLane

S2  InPassingLane  S3  FollowLane

S4  ReturnedToLane  S0  FollowLane
          Done

NewPlan S1  FollowLane

  S3  ClearOfPassedVehicle    S4  ChangeToRightLane

ConditionsGoodToPass

Input State/Situation Output Action

 
Thus, the large set of rules governing the task decision tree 
execution is clustered both by the layer of resolution in the 
hierarchy and by the task context of the particular 
command at each layer so that only a very small number of 
rules have to be searched at any given time.  The execution 
order of these selected rules is controlled by the addition 
of state values.   It is important to note that the knowledge 

 
Figure 4.  The hierarchical organization of agent control 

modules executing the task command decomposition.



discovery, representation and organization have been 
completely driven by looking at the problem from the 
detailed task decomposition point of view. 
 
We will now make an important summary about the 
structuring of the knowledge base in these first three steps.  
These three steps were concerned with task knowledge 
expressed as the finer and finer branching of the decision 
process whereby the output action is sequenced in order to 
accomplish the assigned task.  This third step identifies 
arbitrarily named situations we create to encompass 
everything that the task depends upon at this point and at 
this level of resolution in its execution.  In this example, it 
was named “ConditionsGoodToPass”.   
 
These first three steps provide a complete listing of the 
task decomposition rules (i.e. these rules that determine 
when the system has to do something different in order 
maintain progress towards the goal.)  These rules have 
been grouped into layers of resolution, and within each 
layer, clustered into tables of rules relevant to a single 
input command.  Within each table they are ordered in 
their execution sequence by additional state values.  
 
We can think of these first three steps as identifying the 
procedural knowledge involved in the task decomposition 
process, i.e. defining all of the task branching conditions 
and resultant corrective output actions.   The next three 
steps are to identify all of the knowledge that is used to 
evaluate whether or not the branching conditions are true. 

5.4. Step 4 – Situation Dependencies on World 
States 
The world knowledge we want to identify and represent 
are those precursor world states that determine the task 
branching situation in the input side of the state-tables.  
This is best illustrated with an example.  Figure 6 shows 
the “PassVehInFront” state-table.  As discussed above, the 
output command to “Change To Left Lane” is issued when 
the  “ConditionsGoodToPass” situation occurs.  We ask of 
our expert knowledge sources “what do we have to know 
about the state of the world at this time to say that the 

conditions are good to pass”.  Again, we use detailed 
scenarios and our knowledge sources to drill down to the 
parameters that go into this situation assessment.  We find 
that there is a surprisingly large set of things we want to 
know.  We list these items as they come up in scenarios 
and from manuals – “there cannot be an on-coming car 
within the passing distance”, “there must be a broken 
yellow lane marker on our side of center in the lane”, 
“there cannot be a railroad crossing within the passing 
distance”, “our own  vehicle is not being passed”, etc.  We 
will call these items world states since they seem to 
describe certain attributes about the world that are relevant 
to our present task.  
  
 
The purpose of this step is to provide a listing of all of the 
parameters (in terms of named world states) that affect 
whether the task branching condition situation is true or 
not.  We have not identified the sensitivity of the final 
situation to these precursor values or what functions are 
used to weight and evaluate the individual or combined 
truth of these precursor values.  The identification of these 
world states is independent of whatever technique is used 
to implement the control system.  Different 
implementation paradigms will affect the sensitivity, 
weighting, costing, and other evaluation functions.  For 
example, attributes like the level of driver aggressiveness 
may affect the calculation of the length of the required 
passing zone that is a precursor to a number of individual 
world state calculations related to the  
“ConditionsGoodToPass”. How to best represent these 
functions and the variables they affect is still an area of 
research. 
 
It should be noted that, although these conditions are 
determined at design-time, the execution of them are 
dependent upon parameters that are only made available at 
run-time. Two different implementations of a process 
described by the state machine can perform quite 
differently depending upon the parameters that are 
available at run-time. 

 



 
Figure 6.  The identification of all of the precursor world states used to evaluate whether the situation “ConditionsGoodToPass” is 

true or not. 
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5.5. Step 5 – World State Dependencies on Objects  
This step identifies all of the objects, their features and 
attributes that need to be measured by the sensing system 
to create the world model states described above.  Figure 7 
continues with the passing example.  As described above, 
one of the aggregate world model states was 
“LegalToPass” which was a grouping of a number of 
related world states which all deal with various legal 
restrictions on the passing operation.  One of these 
component world states that identify a legal restriction is 
“NoRailroadCrossingInPassZone”.   In this step, for each 
of the identified world states we wish to identify all of the 
objects, their features, and attributes relevant to creating 
each named world state value. For the world state named 

“NoRailroadCrossingInPassZone”, these objects would 
include the railroad crossbuck emblem, crossing lights, 
crossing gate, crossing signs either alongside the road or 
painted on the road surface, the railroad tracks, and the 
train itself.  For each of these objects, we identify 
characteristic features or attributes that will be used for 
recognition of the object (e.g. the width and length of the 
crossbuck planks) and/or its state (e.g. flashing lights or a 
lowered gate as indicator of active warning state).    
 
Step 4 has defined a surprisingly large set of named world 
states that are relevant to decisions that have to be made at 
each decision point in the task.  Now, in Step 5 we find 
that each of these world states might result from a number 
of objects and each of these has multiple features and 
attributes required for their recognition.  We see that the 
size of the knowledge base is extremely large, but the RCS 
methodology’s approach to the grouping and 
representation of this knowledge base has created a 
manageable structuring.  We have a place to put each piece 
of knowledge and we use the task context to encode much 
of the relationship of the knowledge elements to each 
other. 
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5.6. Step 6 – Measurement Resolutions 
In this last step, we want to define the resolution 
requirements for the measurement of objects for specific 
task decisions.  We do this by determining the expected 
distances to these objects during particular task activities.  
In the case of the task activity of passing a vehicle in front, 

 
Figure 7.  Example of the objects that are used to establish 

the “NoRailroadXinPassZone” world state. 



we have to be able to see objects such as the railroad 
crossbuck at the far limit of the expected passing zone.  
For a vehicle passing on a 75 kph road, the passing zone 
could easily be 200 m or more.  This means that the 
crossbuck, which is found at the railroad crossing itself, 
(whereas warning signs might be up to 300 m before the 
crossing) would have to be sensed and recognized by the 
sensory processing system at this distance.  Since we know 
the size of the crossbuck plank elements, we can make an 
estimate of the absolute minimum sensory processing 
capability required to recognize it at this distance.   
 
These specifications of the objects, attributes, features, and 
measurement resolutions have been derived from a detailed 
analysis of the world states required to evaluate a 
particular task branching condition situation.  This allows 
us to provide a very detailed specification as to what 
sensory processing is required in order to do specific tasks 
and subtasks.  This is important because one of the single 
biggest impediments to the implementation of autonomous 
driving control systems is the lack of capability of the 
sensory processing systems.  The identification of the 
objects of interest for particular task activities focuses the 
attention of the sensory processing on these objects that 
should be measured at the present state of the task, leading 
to very efficient and effective use of this very compute 
intensive resource.  It additionally helps to identify early 
on, during system design, which tasks are even feasible 
given the present state-of-the-art in sensory processing and 
points the direction to research areas to be developed for 
other capabilities to be realized. 
 
This also allows for the development of performance 
specifications in order to qualify systems for different 
driving capabilities [10].  

6.0 Conclusion and Future Prospects 
In many ways, 4D/RCS is a superset of Soar, ACT-R, 
ICARUS, IMPRINT, Dickmanns 4-D approach [13], and 
even behaviorist architectures such as Subsumption [12] 
and its many derivatives. 4D/RCS incorporates and 
integrates many different and diverse concepts and 
approaches into a harmonious whole.  It is hierarchical but 
distributed, deliberative yet reactive. It spans the space 
between the cognitive and reflexive, between planning and 
feedback control.  It bridges the gap between spatial 
distances ranging from kilometers to millimeters, and 
between time intervals ranging from months to 
milliseconds.  And it does so in small regular steps, each of 
which can be easily understood and readily accomplished 
through well known computational processes.   
 
Each organizational unit in 4D/RCS refines tasks with 
about an order of magnitude increase in detail, and an 
order of magnitude decrease in scale, both in time and 
space.  At the upper levels, most of the computational 
power is spent on cognitive tasks, such as analyzing the 

past, understanding the present, and planning for the 
future.  At the lower levels, most of the computational 
power is spent in motor control, and the early stages of 
perception.  4D/RCS makes the processes of intelligent 
behavior understandable in terms of computational theory.  
Thus, it can be engineered into practical machines. 
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